Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Arch Virol ; 168(3): 96, 2023 Feb 26.
Article in English | MEDLINE | ID: covidwho-2258642

ABSTRACT

There is an urgent need to understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-host interactions involved in virus spread and pathogenesis, which might contribute to the identification of new therapeutic targets. In this study, we investigated the presence of SARS-CoV-2 in postmortem lung, kidney, and liver samples of patients who died with coronavirus disease (COVID-19) and its relationship with host factors involved in virus spread and pathogenesis, using microscopy-based methods. The cases analyzed showed advanced stages of diffuse acute alveolar damage and fibrosis. We identified the SARS-CoV-2 nucleocapsid (NC) in a variety of cells, colocalizing with mitochondrial proteins, lipid droplets (LDs), and key host proteins that have been implicated in inflammation, tissue repair, and the SARS-CoV-2 life cycle (vimentin, NLRP3, fibronectin, LC3B, DDX3X, and PPARγ), pointing to vimentin and LDs as platforms involved not only in the viral life cycle but also in inflammation and pathogenesis. SARS-CoV-2 isolated from a patient´s nasal swab was grown in cell culture and used to infect hamsters. Target cells identified in human tissue samples included lung epithelial and endothelial cells; lipogenic fibroblast-like cells (FLCs) showing features of lipofibroblasts such as activated PPARγ signaling and LDs; lung FLCs expressing fibronectin and vimentin and macrophages, both with evidence of NLRP3- and IL1ß-induced responses; regulatory cells expressing immune-checkpoint proteins involved in lung repair responses and contributing to inflammatory responses in the lung; CD34+ liver endothelial cells and hepatocytes expressing vimentin; renal interstitial cells; and the juxtaglomerular apparatus. This suggests that SARS-CoV-2 may directly interfere with critical lung, renal, and liver functions involved in COVID-19-pathogenesis.


Subject(s)
COVID-19 , Humans , COVID-19/pathology , Fibronectins , Vimentin , SARS-CoV-2 , Endothelial Cells , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR gamma , Lung , Inflammation/pathology , Kidney , Liver
2.
N Biotechnol ; 72: 11-21, 2022 Aug 08.
Article in English | MEDLINE | ID: covidwho-2049684

ABSTRACT

Developing affordable and easily manufactured SARS-CoV-2 vaccines will be essential to achieve worldwide vaccine coverage and long-term control of the COVID-19 pandemic. Here the development is reported of a vaccine based on the SARS-CoV-2 receptor-binding domain (RBD), produced in the yeast Pichia pastoris. The RBD was modified by adding flexible N- and C-terminal amino acid extensions that modulate protein/protein interactions and facilitate protein purification. A fed-batch methanol fermentation with a yeast extract-based culture medium in a 50 L fermenter and an immobilized metal ion affinity chromatography-based downstream purification process yielded 30-40 mg/L of RBD. Correct folding of the purified protein was demonstrated by mass spectrometry, circular dichroism, and determinations of binding affinity to the angiotensin-converting enzyme 2 (ACE2) receptor. The RBD antigen also exhibited high reactivity with sera from convalescent individuals and Pfizer-BioNTech or Sputnik V vaccinees. Immunization of mice and non-human primates with 50 µg of the recombinant RBD adjuvanted with alum induced high levels of binding antibodies as assessed by ELISA with RBD produced in HEK293T cells, and which inhibited RBD binding to ACE2 and neutralized infection of VeroE6 cells by SARS-CoV-2. Additionally, the RBD protein stimulated IFNγ, IL-2, IL-6, IL-4 and TNFα secretion in splenocytes and lung CD3+-enriched cells of immunized mice. The data suggest that the RBD recombinant protein produced in yeast P. pastoris is suitable as a vaccine candidate against COVID-19.

3.
Vaccines (Basel) ; 10(6)2022 Jun 03.
Article in English | MEDLINE | ID: covidwho-1884428

ABSTRACT

COVID-19 is a respiratory viral disease caused by a new coronavirus called SARS-CoV-2. This disease has spread rapidly worldwide with a high rate of morbidity and mortality. The receptor-binding domain (RBD) of protein spike (S) mediates the attachment of the virus to the host's cellular receptor. The RBD domain constitutes a very attractive target for subunit vaccine development due to its ability to induce a neutralizing antibody response against the virus. With the aim of boosting the immunogenicity of RBD, it was fused to the extracellular domain of CD154, an immune system modulator molecule. To obtain the chimeric protein, stable transduction of HEK-293 was carried out with recombinant lentivirus and polyclonal populations and cell clones were obtained. RBD-CD was purified from culture supernatant and further characterized by several techniques. RBD-CD immunogenicity evaluated in mice and non-human primates (NHP) indicated that recombinant protein was able to induce a specific and high IgG response after two doses. NHP sera also neutralize SARS-CoV-2 infection of Vero E6 cells. RBD-CD could improve the current vaccines against COVID-19, based in the enhancement of the host humoral and cellular response. Further experiments are necessary to confirm the utility of RBD-CD as a prophylactic vaccine and/or booster purpose.

4.
Vaccine ; 40(8): 1162-1169, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1627013

ABSTRACT

Since the beginning of the COVID-19 pandemic, the development of effective vaccines against this pathogen has been a priority for the scientific community. Several strategies have been developed including vaccines based on recombinant viral protein fragments. The receptor-binding domain (RBD) in the S1 subunit of S protein has been considered one of the main targets of neutralizing antibodies. In this study we assess the potential of a vaccine formulation based on the recombinant RBD domain of SARS-CoV-2 expressed in the thermophilic filamentous fungal strain Thermothelomyces heterothallica and the hepatitis B virus (HBV) core protein. Functional humoral and cellular immune responses were detected in mice. To our knowledge, this is the first report on the immune evaluation of a biomedical product obtained in the fungal strain T. heterothallica. These results together with the intrinsic advantages of this expression platform support its use for the development of biotechnology products for medical purpose.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunity, Cellular , Mice , Mice, Inbred BALB C , Pandemics , SARS-CoV-2
5.
J Immunol Methods ; 500: 113195, 2022 01.
Article in English | MEDLINE | ID: covidwho-1536656

ABSTRACT

COVID-19 pandemic poses a serious threat to human health; it has completely disrupted global stability, making vaccine development an important goal to achieve. Monoclonal antibodies play an important role in subunit vaccines strategies. In this work, nine murine MAbs against the RBD of the SARS-CoV-2 spike protein were obtained by hybridoma technology. Characterization of purified antibodies demonstrated that five of them have affinities in the order of 108 L/mol. Six MAbs showed specific recognition of different recombinant RBD-S antigens in solution. Studies of the additivity index of anti-RBD antibodies, by using a novel procedure to determine the additivity cut point, showed recognition of at least five different epitopes. The MAbs CBSSRBD-S.11 and CBSSRBD-S.8 revealed significant neutralizing capacity against SARS-CoV-2 in an ACE2-RBD binding inhibition assay (IC50 = 85.5pM and IC50 = 122.7pM, respectively) and in a virus neutralizing test with intact SARS-CoV-2 (VN50 = 0.552 nM and VN50 = 4.854 nM, respectively) when D614G strain was used to infect Vero cells. Also CBSSRBD-S.11 neutralized the SARS-CoV-2 strains Alpha and Beta: VN50 = 0.707 nM and VN50 = 0.132 nM, respectively. The high affinity CBSSRBD-S.8 and CBSSRBD-S.7 recognized different epitopes, so they are suitable for the development of a sandwich ELISA to quantitate RBD-S recombinant antigens in biomanufacturing processes, as well as in pharmacokinetic studies in clinical and preclinical trials.


Subject(s)
Antibodies, Monoclonal/metabolism , COVID-19 Vaccines/immunology , COVID-19/diagnosis , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/genetics , COVID-19/immunology , COVID-19 Vaccines/genetics , Clinical Trials as Topic , Female , Genetic Engineering , Humans , Mice , Mice, Inbred BALB C , Protein Interaction Domains and Motifs/genetics , Vaccine Development , Vaccines, Subunit/genetics
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.29.20164251

ABSTRACT

Abstract Objectives: IFN-alpha2b and IFN-gamma combination has demonstrated favorable pharmacodynamics for genes underlying antiviral activity which might be involved in the defense of the organism from a SARS-CoV-2 infection. Considering this we conducted a randomized controlled clinical trial for efficacy and safety evaluation of subcutaneous IFN-alpha2b and IFN-gamma administration in patients positive to SARS-CoV-2. Methods: We enrolled 19-82 years-old inpatients at the Military Central Hospital Luis Diaz Soto, Havana, Cuba. They were hospitalized after confirmed diagnosis for SARS-CoV-2 RNA by real-time reverse transcription polymerase chain reaction. Patients were randomly assigned in a 1:1 ratio to receive either, subcutaneous treatment with a co-lyophilized combination of 3.0 MIU IFN-alpha2b and 0.5 MIU IFN-gamma (HeberFERON, CIGB, Havana, Cuba), twice a week for two weeks, or thrice a week intramuscular injection of 3.0 MIU IFN-alpha2b (Heberon Alpha R, CIGB, Havana, Cuba). Additionally, all patients received lopinavir-ritonavir 200/50 mg every 12 h and chloroquine 250 mg every 12 h (standard of care). The primary endpoints were the time to negativization of viral RNA and the time to progression to severe COVID-19, from the start of treatment. The protocol was approved by the Ethics Committee on Clinical Investigation from the Hospital and the Center for the State Control of Medicines, Equipment and Medical Devices in Cuba. Informed consent was obtained from each participant. Results: A total of 79 patients with laboratory-confirmed SARS-CoV-2 infection, including symptomatic or asymptomatic conditions, fulfilled the inclusion criteria and underwent randomization. Thirty-three subjects were assigned to the HeberFERON group, and 33 to the Heberon Alpha R group. Sixty-three patients were analyzed for viral negativization, of them 78.6% in the HeberFERON group negativized the virus after 4 days of treatment versus 40.6% of patients in the Heberon Alpha R groups (p=0.004). Time to reach the negativization of the SARS-CoV-2 measured by RT-PCR in real time was of 3.0 and 5.0 days for the HeberFERON and Heberon Alpha R groups, respectively. A significant improvement in the reduction of time for negativization was attributable to HeberFERON (p=0.0027, Log-rank test) with a Hazard Ratio of 3.2 and 95% CI of 1.529 to 6.948, as compared to Heberon Alpha R treated group. Worsening of respiratory symptoms was detected in two (6.6%) and one (3.3%) patients in HeberFERON and IFN-alpha2b groups, respectively. None of the subjects transit to severe COVID-19 during the study or the epidemiological follow-up for 21 more days. RT-PCR on day 14 after the start of the treatment was negative to SARS-CoV-2 in 100% and 91% of patients of the combination of IFNs and IFN-alpha2b, respectively. Negativization for HeberFERON treated patients was related to a significant increase in lymphocytes counts and an also significant reduction in CRP as early as 7 days after commencing the therapeutic schedule. All the patients in both cohorts recover by day 14 and were in asymptomatic condition and laboratory parameters return to normal values by day 14 after treatment initiation. Adverse events were identified in 31.5% of patients, 28.5% in the control group, and 34.4% in the HeberFERON group, and the most frequent were headaches (17.4%). Conclusions: In a cohort of 63 hospitalized patients between 19 to 82 years-old with positive SARS-CoV-2, HeberFERON significantly negativized the virus on day 4 of treatment when comparing with IFN-alpha2b. Heberon Alpha R also showed efficacy for the treatment of the viral infection. Both treatments were safe and positively impact on the resolution of the symptoms. None of the patients developed severe COVID-19. Key words: COVID-19, treatment, drug, virus negativization, antiviral, interferon combination, SARS CoV-2.


Subject(s)
Headache , Virus Diseases , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL